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ESTIMATING PERCENTILES OF NONNORMAL ANTHROPOMETRIC POPULATIONS:
FINAL REPORT

H. F. Martz, Jr.

ABSTRACT

The most commonly used method for estimating percentiles of anthropometric populations is based on the
assumption that the population is normally distributed. This assumption is approximately truc for many such
variablcs, e.g., hip breadth. On the other hand, numerous nonnormally distributed anthropometric populations
are known to exist, e.g., grip strength. The question of how to estimate percentiles of nonnormal populations

is addressed here.

A nonparametric percentile estimation method, based on the use of a kemel-type probability density
function estimator, is presented. A ‘‘nonparametric” method is defined as a method that docs not make or
require any assumption about the statistical distribution of the underlying population. Thus, the method can
be applied to any population of anthropometric data, regardless of the normality of the data. The method is
simple to use; however, a single nonlinear equation must be numerically solved on a computer by any one of

numerous well-documented nonlinear root finding methods.

Two examples are used to iflustrate the method. In the first example, selected samples of size 50 of hip
breadth data are randomly drawn from a population of size 2420 observations from the 1967 anthropometric
survey of U.S. Air Force flying personnel. The proposed method is compared to the standard gaussian method.
Since this population was selected as normally distributed, the standard method outperforms the proposed
nonparametric method. In the case of grip-strength data, the proposed method yields more accurate estimates,
in a mean squared error sense, of the upper percentiles of this population. For anthropometric distributions
known to be nonnormal or where normality cannot be assumed, the proposed nonparametric 1nethod appears

a method for consideration.

INTRODUCTION

It is common practice to characterize anthropometric
design limits in terms of suitable percentiles of a population
of intcrest. A percentile gives the percentage of persons
within the population who have a body dimension of a
certain size or smaller. There are two commonly used
methods for estimating percentiles. The first method is a
simple well-known counting procedure. The data are ar-
ranged in ascending order of size, and then are grouped
into convenicnt class intervals. Finally, the number of
measurements below each upper class limit are counted.
divided by the total number of measurements. and multi-
plied by 100 to determine the percentile rank. This method
may be used cither for the entire population or for a
sample from the population. In the case of sample data,
the computed percentile is an estimate of the (true) under-
lying population percentile. As a consequence, it is subject
to certain statistical errors.

The second commonly used method is to assume that
the anthropometric measurement of interest is normally
distributed. The mean and variance of this distribution are
then used in conjunction’ with stated “factors™ to estimate
the desired percentiles. The method requires that either
the entire population of measurements is available or that
the sample size is sufficiently large. The required “factors™
are provided by Rocbuck (1957), and a complete descrip-
tion may be found in the book by Roebuck, Kroemer, and
Thomson (1975, pp. 132-144).

Most human factors investigators are aware of the
existence of certain anthropometric populations which are
nonnormally distributed. An example of such a popula-
tion will be presented later. The question of how to ¢sti-
mate percentiles of such populations is an important one.
The purpase of this paper is to present 2 method which can
be used to obtain either population percentiies or percent-
ile estimates for any anthropometric population. The
method is a nonparametric one, which means that it does
not assume specitic knowledge of the statistical distribution,
e.g., the normal distribution, of thc measurement of in-
terest. Thus, the method is particularly appropriate for use
in populations which are either not known to be normal or
known to be nonnormal.

METHOD
Background

Over the past two decades there have been some im-
portant developments in the arca of statistical theory
known as “‘nonparametric probabtility density function
estimation.” Wegman (1972a) presents a thorough sum-
mary survey ol the historical developments in this arca. In
short, the basic idea is to provide an estimator which can
be used to estimate the complete underlying probability
density function, based on a sample from the population,
without the necessity to first estimate certain “parameters”
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of the population such as the mean, variance, etc. How-
ever, such characteristics may be estimated once the esti-
mated probability density function has been obtained. Of
particular interest here are the percentiles of such an esti-
mated probability density function. The particular proba-
bility density function estimator considered here is attnb-
uted to Rosenblatt (1956) and Parzen (1962). Suppose
that we have a random sample X, X,, .. X of size n
from some population having unknown and unspecified
probahility density function f(x). Following Rosenblatt
(1956) and Parzen (1962), the estimator of f(x), I‘n(x), may
in general be fepresented

-L 2 X=X
o= X K(——h-’-) M

where K(+) is a suitably chosen function, referred to as the
“kernel,” “smoothing,” or “window" function, and h =
h(n) s a suitably chosen function of n in which it is re-
quired that h « 0 and nh » = as n + . The kerncl function
K must also satisfy certain conditions which are given in
Parzen (1962). Based on the work of Parzen (1962), Weg-
man (1972a, b), and Bennet (1970), the particular K and h
given by

K(x)=0Sexp (-Ixf), =~=< X< e )
and

h=sn"""
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where s is the sample standard deviation of the measurement
Xpoo oo Xy, are sclected for use here. Although other
functions could be considered, this choice is known to pro-
duce good results [Bennett (1970)). Thus, the probability
density function estimator to be used here is given by

h X=X,
won B E (5]} - <nee o

To better understand this estimator, figures ) and 2 give a
plot of (3) based on a random sample of size 100 observa-
tions from a symmetric (approximately gaussian) distribu-
tion and an asymmetric nght-skewed distribution, respec-
tively. Both f(x) and f,(x) are shown for comparison, and
arbitrary scales were chosen for x. It is observed in both
cases that the estimates provide reasonably close approxi-
mations to the true densitics.

Development

Of interest here are the percentiles of f (x) given in (3),
since these are the desired estimates of the population per-
centiles of f(x). Let X, represent the 100 (a)th percentile of
£,(x) given in (3). That is, for a specified value ofa, x,
satisfies the equation given by

X
f ® 00 dx = a. )

LEGEND
f(x)
fa(x)
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X

Figure 1. The Estimate I'“(x) ol an Underlying Gaussian Density {(x).
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Figure 2. The Estimate fn(x) of an Underlying Right-Skewed Density f(x).

Thus. x,, is the required percentile estimate of the popula-
tion percentile value for which 100 (a) “% of the anthropo-
metric measurements do not exceed this value. For exam-
ple, if @ = 0.95, then x5 g5 is the required estimate of the 95th
population percentile.

Substituting (3) into (4). integrating, and simplifying
gives Xg 25 the solution to the nonlinear equation given by

n
Gix,)= hln [Z exp l'(‘.'h)]

n
=hin{3 explix +x,/2h - ix; =X )/>h - x;/h)
i=1

n
+ 3 explix; - xgli2h = &+ x,1/2h + x;/h = 2n,
i=l
- x. = o. (S‘
Although this equation looks formidable, it may be easily
and cfficiently solved for x  on a computer by means of

any one of numerous well-documented nonlincar root
finding subroutines.

EXAMPLES

The percentile estimation method presented here was

used to estimate selected percentiles for certain anthropo-
metric variables in the survey of USAF flying personnel
conducted by Clauser, Alexander. and Kennedy (1967).  In
this survey, 183 variables were finally selected and recorded
for 2420 male pilots. Two of these anthropometric vari-
ables will be considered here, namely, hip breadth and grip

strength.

First. let us consider hip breadth. The population
mean and standard deviation of all hip breadth measure-
ments are respectively computed to be 352 millimeter (mm)
and 19 mm. Based on a random sample of 500 hip breadth
measurements. the hypothesis of normality of this popula-
tion is accepted by the chi-square, Kolmogorov-Smirnov.
and Cramer-Von Mises goodnes-of-fit tests at the 20 per-
cent level of significance. Thus, this population will be
considered to be ““normally distributed.™

Let us examine the performance of the percentile
estimation method presented here and compare the perfor-
mance with the gaussian percentile estimation method. Of
course, the gaussian method is expected to yield superior
results in this case which may be thought of as a worst
case analysis for the alternative percentile estimation
method presented here. The procedure was as follows:
Ten successive random samples each of size S0 were drawn
without replacement from the population of hip breadth
measurements. The 50, 55, 60, 65, 70, 75, 80, 8§, 90, 95,
97.5. 99, and 99.5th percentile estimates were computed
for each sample by both the gaussian method [see Roebuck,




Kroemer, and Thomason (1975)] and equation (S). In order
to compare the performance of both methods, the corre-
sponding population percentiles were computed for all 2420
observations by means of the counting method described
earlier. These population percentiles were taken to be the
standard reference values. The average nonparametric per-
centile estimates, gaussian estimates, and corresponding
oopulation percentiles were then computed from the ten
samples and are presented in table 1. In addition, the
average squared error between each estimate and the corre-
sponding population percentile value was computed for both
methods and is also given in table 1. As observed, the
gaussian method is superior for estimating the. percentiles of
the hip breadth population, particularly for the 70th and
larger percentiles. This is the result of utilizing the added
information of normality in the gaussian method when, in
fact, the population is indeed a “normally distributed” one.
Recall that this assumption is not made when using equa-
tion (5).

Now let us consider grip strength. The population
mean and standard deviation of all grip strength measure-
ments are computed to be 5.6 pounds and 7.6 pounds, re-
spectively. Based on a random sample of 500 grip strength
measurements, the hypothesis of normality of this popula-
tion is rejected by both the chi-square, and Cramer-Von
Mises goodness-of-fit tests at the 10 percent level of sig-
nificance. Thus, this population is not normally distributed
as was the case for the hip breadth distribution.

Let us now examine the performance of the percentile
estimation method presented here and again compare the
performance with the gaussian method. The same manner
of comparison was used as for the hip breadth population
data. Table 2 illustrates the results of the comparison. It
is observed that the nonparametric estimator outperforms
the gaussian estimator when estimating the 97.5, 99, and
99.5th percentiles.

Table 1. Average Percentile Estimates and Average Squared Error Performance
for the Hip Breadth Population Data

Perceatile (;-au&ii;m Non_pammemc Population Avcmgc_Squarc.d Error Average Squ.arcfi Error
2 Estimate Estimate Percentile (Gaussian Estimate) (Nonparametric Estimate)
50.0 354.79 354.78 352 19.08 19.03
55.0 357158 357.17 354 22.11 22.17
60.0 359.54 359.59 356 25.66 25.94
65.0 362.0! 362.19 359 23.38 24.32
70.0 364.62 364.94 362 22.53 24.70
75.0 367.43 368.01 368 23.22 26.37
80.0 370.58 371.72 367 32.17 42.717
85.0 371422 376.19 371 3231 51.90
90.0 3178 .84 381.94 376 33.66 67.13
95.0 385.65 390.15 385 3231 66.63
97.5 391.5§ 397.36 392 38.33 75.86
99.0 39842 406.15 402 59.12 79.65
99.5 403.11 412.09 408 76.38 88.61 i
Table 2. Average Percentile Estimates and Average Squared Error Performance
for the Grip Strength Population Data
Percentile Gaussian le_p.lr;lmclric Poputation | Average Squ.:nrc.d Error Average Squared l:'rmr
Estimate Estimate Percentile (Gaussian Estimate) (Nonparametric Estimate)
50.G 56.35 56.35 56 0.82 0.82
55.0 57.28 §7.28 57 0.90 0.90
60.0 58.22 $8.22 58 1.02 1.02
65.0 59.19 §9.19 59 1.19 1.19
70.0 60.22 60.22 60 1.42 1.42
75.0 61.32 6142 61 1.76 1.90
80.0 62.56 62.93 63 2.20 2.14
85.0 63.99 64.70 64 247 3.23
90.0 65.80 66.99 66 3.19 4.99
95.0 68.48 70.60 70 6.64 7.69
97.5 70.80 73.61 73 10.35 9.21
99.0 73.50 76.90 76 13.36 10.90
99.5 75.34 79.22 78 15.38 13.31
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CONCLUSIONS

In conclusion, based on the limited comparison just
described, it is conjectured that the nonparametric percent-
ile estimator will outperforin the gaussian estimator for
nonnormal populations.  Although extensively investigated,
the degree of performance improvement appears to be
: proportional to the degree of nonnormahty. Future effort
| needs 1o be directed toward an extensive Monte Carlo
simulation for further examination of the proposed non-
parametnc percentile estimator.
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